

Outline

- I. Target selection in DEEP2
- II. Confronting redshift failures
- III. Bias of bright blue galaxies at z~1

DEEP2: A Redshift Survey at z~1

DEEP2 (= **D**EEP Extragalactic Evolutionary **P**robe **2**) was designed to study both galaxy properties and large-scale structure at z~1.

U.C. Berkeley

M. Davis (PI)

U.Pitt.

J. Newman

UCSD

A. Coil

Steward Obs.

M. Cooper

B. Weiner

C. Willmer

Toronto

R. Yan

U.C. Santa Cruz

S. Faber (Co-PI)

D. Koo

P. Guhathakurta

A. Phillips

K. Noeske

A. Metevier

L. Lin

J. Harker

G. Graves

Stanford

B.Gerke

Princeton

C. Conroy

Harvard

D. Finkbeiner

U. Washington

A. Connolly

U. Hawaii

N. Kaiser

Gemini

R. Schiavon

Vital statistics of DEEP2

·Observational details:

- $\cdot \sim 3$ sq. degrees
- 4 fields $(0.5^{\circ} \text{ x} < 2^{\circ})$
- $\cdot RAB \le 24.1$
- 80+ Keck nights
- •>33,000 redshifts
- primarily 0.7 < z < 1.4
 - •(pre-selected using BRI photometry)

DEEP2 was made possible by DEIMOS, a new instrument at Keck

A massive (10 ton)
new instrument, the
DEIMOS spectrograph
(PI: Faber), was
designed specifically
for DEEP2. A grant of
80 nights' observing
time from the
University of
California has brought
DEEP2 to fruition.

All DEEP2 data have been released!

http://deep.berkeley.edu/DR3

DEEP2 pre-selects high-z galaxies using observed colors

First guess: CWW/Kinney-

Calzetti

Final cut: refined with DEEP1+PEEP (177 galaxies), + 1st semester's data

Nov. 2009

BRI color cut was highly successful

DEEP2 color cuts give very efficient selection

Redshift success rates will be an issue

Need to consider redshift success rates in optimizing design

e.g. zCOSMOS-bright: Redshift success is a strong function of magnitude.

In DEEP2, redshift success is ~flat for blue galaxies, drops for red

Little luminosity dependence in z success as SFR/line luminosity is a slow function of mass

Noeske et al. 2007

Redshift Success in DEEP2 color-color diagrams

Observed color-color diagram for DEEP2 targets (in EGS, so no color cut)

CWW tracks through CMD (dot-solid transition at z=0.7, diamonds every 0.2 in z)

Redshift Success in DEEP2 color-color diagrams

Success (Q=3 or 4) rate for DEEP2; <90% in best regions

CWW tracks through **CMD**

Bias of bright blue galaxies at z~1

DEEP2, *z*~0.9

brighter —

- brighter

Willmer et al. 2005

Highest SFR/highest-emission objects are bright and blue

top 10% & bottom 10%

Cooper et al. 2007

Environment (overdensity) effectively is large-scale structure bias on ~2 Mpc

The environment measure we use (projected 3rd-nearest-neighbor overdensity, $<1+\delta_3>$) corresponds closely to the bias determined from DEEP2 correlation function measurements (but errors are smaller / can break samples into finer bins).

Environment over the CMD

SDSS, *z*~0.1

DEEP2, 0.75<z<1.05

Overall, environmental trends for galaxy colors & luminosities look largely similar at z~0 and z~1: but bright blue galaxies have higher bias than today Cooper et al. 2006

The strongest environmental trend is for red galaxies to be found in dense environments

linear overdensity

Environment vs. Luminosity

Blue galaxies

Red galaxies

Unlike locally, red and blue galaxies have very **similar** trends of environment vs. luminosity at $z\sim1$: massive blue galaxies in dense environments became red by $z\sim0$

Cooper et al. 2006

Nov. 2009

DEEP3

- · 18k new spectra, EGS only
- Target the 40% of R_{AB}<24.1 objects DEEP2 missed, plus:
 - All FIDEL Spitzer 70µm sources
 - All *Chandra* sources down to R_{AB}~24.5
 - "Faint extension" of starforming galaxies down to R_{AB}~25.5
- Granted 23 nights & longterm status from UC TAC

Conclusions

- Color selection was highly effective for DEEP2, but sorting out low-luminosity low-z galaxies from luminous $z\sim2$ galaxies is hard
- Need to consider redshift success as well as redshift range in designing optimized samples
- Bright (M_B + 5 log h< -21) blue galaxies in DEEP2 have bias ~1.4+/- 0.2 (for σ_8 =0.9) at z~0.8; r_0 ~4.3+/- 0.4 h⁻¹ Mpc comoving, γ ~1.75+/-0.05 (Coil et al. 2007). These numbers become b~2, r_0 ~5.75 for M_B + 5 log h< -22 (Cooper et al. 2007).
- Many new results from DEEP2, DEEP3, & AEGIS soon!
- Look for DEEP2 DR4 & survey paper (Newman et al.) in 2010

New data releases!

http://deep.berkeley.edu/DR3 http://aegis.ucolick.org